Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Attacks/Breaches

1/30/2018
10:30 AM
Cricket Liu
Cricket Liu
Commentary
Connect Directly
Twitter
LinkedIn
RSS
E-Mail vvv
50%
50%

DNS Hijacking: The Silent Threat That's Putting Your Network at Risk

The technique is easy to carry out and can cause much damage. Here's what you need to know about fighting back.

In its bag of tricks, the recently discovered MaMi malware has the ability to modify the DNS configuration of an infected device. This is a good reminder that DNS hijacking is an ongoing threat that needs to be taken seriously by corporate IT organizations. DNS hijacking is easy to carry out, can be tough to detect, and is surprisingly damaging. Here's what you ought to know  and what you can do to combat it.

DNS hijacking is simple enough: one only needs to rewrite the configuration of a device on the Internet so that it sends DNS queries to malicious DNS servers. Many species of malware do this, often as just one of many consequences of infecting a device. And virtually any malware can do this — modifying DNS settings generally doesn't require any special privileges. Perhaps the most famous malware in this category is DNSChanger, which may have infected more than 4 million computers. Although DNSChanger was taken down in 2011, there are likely still hundreds of thousands of infected computers on the Internet.

So why change a device's DNS configuration? In the case of DNSChanger, it was primarily to substitute advertising on websites with advertising sold by the bad guys running the rogue DNS servers. That perhaps doesn't sound too alarming, but DNS hijacking can have much more serious effects, too. Take, for instance, the malicious DNS servers David Dagon and company discovered and wrote about in their 2008 study, "Corrupted DNS Resolution Paths: The Rise of a Malicious Resolution Authority." Dagon discovered a small but significant percentage of open recursive DNS servers on the Internet that, no matter what domain name you looked up, would always lie in the response. Some, for example, would always reply with the same set of IP addresses, none of which were the correct addresses. The address of www.nytimes.com? Addresses A, B, and C. The address of www.bankofamerica.com? That same set of addresses: A, B, and C.

What purpose could that serve? Well, it turned out that the hosts at those IP addresses (A, B and C, in our example) ran open Web proxies. As a result, users whose devices queried those DNS servers would unwittingly have all of their access to the Web directed through those open Web proxies, where their traffic could be snooped. And the DNS servers could just as easily have directed users to websites that looked identical to their bank's or brokerage's, where they'd unknowingly enter their authentication credentials and have them captured for the bad guys' later use.

Fortunately, there's a simple way to mitigate the threat of these DNS hijacking attacks: don't allow arbitrary internal IP addresses on your enterprise network to send DNS queries to arbitrary IP addresses on the Internet.

In most DNS architectures, only a subset of your DNS servers (referred to as Internet forwarders) actually need to be able to query DNS servers on the Internet. You should explicitly allow only their IP addresses to exchange DNS messages with IP addresses on the Internet. If some of your internal devices become infected with malware that modifies their DNS configurations, they'll simply stop resolving domain names, which should alert their users to the fact that something is wrong. Hopefully, that would induce them to take their devices to IT where, with any luck, the infection would be detected.

Related Content:

Cricket Liu is a leading expert on the Domain Name System (DNS) and EVP and Senior Fellow at Infoblox. With more than 25 years of experience with enterprise-scale DNS infrastructure, technical writing, training, and course development experience, Cricket serves as a liaison ... View Full Bio
Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
Microsoft Patches Wormable RCE Vulns in Remote Desktop Services
Kelly Sheridan, Staff Editor, Dark Reading,  8/13/2019
The Mainframe Is Seeing a Resurgence. Is Security Keeping Pace?
Ray Overby, Co-Founder & President at Key Resources, Inc.,  8/15/2019
GitHub Named in Capital One Breach Lawsuit
Dark Reading Staff 8/14/2019
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Current Issue
7 Threats & Disruptive Forces Changing the Face of Cybersecurity
This Dark Reading Tech Digest gives an in-depth look at the biggest emerging threats and disruptive forces that are changing the face of cybersecurity today.
Flash Poll
The State of IT Operations and Cybersecurity Operations
The State of IT Operations and Cybersecurity Operations
Your enterprise's cyber risk may depend upon the relationship between the IT team and the security team. Heres some insight on what's working and what isn't in the data center.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2019-15132
PUBLISHED: 2019-08-17
Zabbix through 4.4.0alpha1 allows User Enumeration. With login requests, it is possible to enumerate application usernames based on the variability of server responses (e.g., the "Login name or password is incorrect" and "No permissions for system access" messages, or just blocki...
CVE-2019-15133
PUBLISHED: 2019-08-17
In GIFLIB before 2019-02-16, a malformed GIF file triggers a divide-by-zero exception in the decoder function DGifSlurp in dgif_lib.c if the height field of the ImageSize data structure is equal to zero.
CVE-2019-15134
PUBLISHED: 2019-08-17
RIOT through 2019.07 contains a memory leak in the TCP implementation (gnrc_tcp), allowing an attacker to consume all memory available for network packets and thus effectively stopping all network threads from working. This is related to _receive in sys/net/gnrc/transport_layer/tcp/gnrc_tcp_eventloo...
CVE-2019-14937
PUBLISHED: 2019-08-17
REDCap before 9.3.0 allows time-based SQL injection in the edit calendar event via the cal_id parameter, such as cal_id=55 and sleep(3) to Calendar/calendar_popup_ajax.php. The attacker can obtain a user's login sessionid from the database, and then re-login into REDCap to compromise all data.
CVE-2019-13069
PUBLISHED: 2019-08-17
extenua SilverSHielD 6.x fails to secure its ProgramData folder, leading to a Local Privilege Escalation to SYSTEM. The attacker must replace SilverShield.config.sqlite with a version containing an additional user account, and then use SSH and port forwarding to reach a 127.0.0.1 service.