Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Cloud

4/9/2018
10:30 AM
Ory Segal
Ory Segal
Commentary
Connect Directly
Twitter
LinkedIn
RSS
E-Mail vvv
100%
0%

Serverless Architectures: A Paradigm Shift in Application Security

"Serverless" forces software architects and developers to approach security by building it in rather than bolting it on. But there is a downside.

One of the biggest security upsides to developing on serverless architectures is that organizations don't have to deal with the daunting task of having to constantly apply security patches for the underlying operating system. These tasks are now in the domain of the serverless architecture provider.

Yet even though developers are no longer accountable for the many security tasks now handled by the serverless cloud provider, they are still responsible for designing robust applications and making sure that application code doesn't introduce application layer vulnerabilities. It seems that this responsibility is not going away any time soon.

Moreover, any configuration related to the application itself or to the cloud services it interacts with would still need to be secure; again, this is still the responsibility of the application owner.

In the serverless world, the cloud vendor and you share security responsibilities. The following images demonstrate the shared serverless security responsibilities model:


While serverless architectures introduce simplicity and elegance, it also introduces a new set of issues and application security challenges:

Increased attack surface: Serverless functions consume data from a wide range of event sources such as HTTP APIs, message queues, cloud storage, and Internet of Things device communications. This increases the attack surface dramatically, especially when messages use protocols and complex message structures, many of which cannot be inspected by standard application layer protections such as Web application firewalls.

Attack surface complexity: The attack surface in serverless architectures can be difficult for some to understand given that such architectures are still rather new. Many software developers and architects have yet to gain enough experience with the security risks and appropriate security protections required to secure such applications.

Overall system complexity: Visualizing and monitoring serverless architectures is still more complex than standard software environments

Inadequate security testing: Performing security testing for serverless architectures is more complex than testing standard applications, especially when such applications interact with remote third-party services or with back-end cloud services such as NoSQL databases, cloud storage, or stream processing services. In addition, automated scanning tools are currently not adapted to scanning serverless applications.

Traditional security protections become unsuitable: Since organizations that use serverless architectures do not have access to the physical (or virtual) server or its operating system, they are not at liberty to deploy traditional security layers such as endpoint protection, host-based intrusion prevention, Web application firewalls, or RASP (runtime application self-protection) solutions.

This last point mandates a drastic paradigm shift in application security for serverless architectures. By definition, in a serverless architecture you only control your application's code, and that's pretty much the only thing you own. This means that if you need to protect your own serverless code, your only option is to make sure that you write secure code and that you bake security into your application.

That's actually not a bad thing — serverless computing forces software architects and developers to approach security the way it should've been approached early on — by building security in rather than bolting it on.

Related Content:

Interop ITX 2018

Join Dark Reading LIVE for two cybersecurity summits at Interop ITX. Learn from the industry’s most knowledgeable IT security experts. Check out the security track here. Register with Promo Code DR200 and save $200.

 

Ory Segal is a world-renowned expert in application security, with 20 years of experience in the field. Ory is the CTO and co-founder of PureSec, a start-up that enables organizations to secure serverless applications. Prior to PureSec, Ory was senior director of threat ... View Full Bio
 

Recommended Reading:

Comment  | 
Print  | 
More Insights
Comments
Threaded  |  Newest First  |  Oldest First
COVID-19: Latest Security News & Commentary
Dark Reading Staff 10/30/2020
'Act of War' Clause Could Nix Cyber Insurance Payouts
Robert Lemos, Contributing Writer,  10/29/2020
6 Ways Passwords Fail Basic Security Tests
Curtis Franklin Jr., Senior Editor at Dark Reading,  10/28/2020
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
How to Measure and Reduce Cybersecurity Risk in Your Organization
In this Tech Digest, we examine the difficult practice of measuring cyber-risk that has long been an elusive target for enterprises. Download it today!
Flash Poll
How IT Security Organizations are Attacking the Cybersecurity Problem
How IT Security Organizations are Attacking the Cybersecurity Problem
The COVID-19 pandemic turned the world -- and enterprise computing -- on end. Here's a look at how cybersecurity teams are retrenching their defense strategies, rebuilding their teams, and selecting new technologies to stop the oncoming rise of online attacks.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2020-27652
PUBLISHED: 2020-10-29
Algorithm downgrade vulnerability in QuickConnect in Synology DiskStation Manager (DSM) before 6.2.3-25426-2 allows man-in-the-middle attackers to spoof servers and obtain sensitive information via unspecified vectors.
CVE-2020-27653
PUBLISHED: 2020-10-29
Algorithm downgrade vulnerability in QuickConnect in Synology Router Manager (SRM) before 1.2.4-8081 allows man-in-the-middle attackers to spoof servers and obtain sensitive information via unspecified vectors.
CVE-2020-27654
PUBLISHED: 2020-10-29
Improper access control vulnerability in lbd in Synology Router Manager (SRM) before 1.2.4-8081 allows remote attackers to execute arbitrary commands via port (1) 7786/tcp or (2) 7787/tcp.
CVE-2020-27655
PUBLISHED: 2020-10-29
Improper access control vulnerability in Synology Router Manager (SRM) before 1.2.4-8081 allows remote attackers to access restricted resources via inbound QuickConnect traffic.
CVE-2020-27656
PUBLISHED: 2020-10-29
Cleartext transmission of sensitive information vulnerability in DDNS in Synology DiskStation Manager (DSM) before 6.2.3-25426-2 allows man-in-the-middle attackers to eavesdrop authentication information of DNSExit via unspecified vectors.