Operations

7/10/2018
10:00 AM

7 Ways to Keep DNS Safe

A DNS attack can have an outsize impact on the targeted organization - or organizations. Here's how to make hackers' lives much more difficult.
2 of 8

DNSSEC
To a great extent, protecting DNS today begins with DNSSEC. The DNS Security Extensions handle one set of tasks, but it's an extremely important set in the overall scheme of things. DNSSEC is all about making sure that the server (or service) you want to talk to is the one you're actually talking to.
DNSSEC uses a DNSSEC-validating DNS resolver to check DNS signatures and ensure that the resolution information has not been changed and the responding server is the correct server. It's important to note that the signatures in DNSSEC aren't used for any sort of encryption - they're only responsible for validating the identity of the servers involved.
It's also important to note that DNSSEC can protect more than Web pages. Any service that uses a DNS-based address, from email to instant messaging, can benefit from the server authentication provided by DNSSEC.
(Image: Profit_Image VIA SHUTTERSTOCK)

DNSSEC

To a great extent, protecting DNS today begins with DNSSEC. The DNS Security Extensions handle one set of tasks, but it's an extremely important set in the overall scheme of things. DNSSEC is all about making sure that the server (or service) you want to talk to is the one you're actually talking to.

DNSSEC uses a DNSSEC-validating DNS resolver to check DNS signatures and ensure that the resolution information has not been changed and the responding server is the correct server. It's important to note that the signatures in DNSSEC aren't used for any sort of encryption they're only responsible for validating the identity of the servers involved.

It's also important to note that DNSSEC can protect more than Web pages. Any service that uses a DNS-based address, from email to instant messaging, can benefit from the server authentication provided by DNSSEC.

(Image: Profit_Image VIA SHUTTERSTOCK)

2 of 8
Comment  | 
Print  | 
Comments
Newest First  |  Oldest First  |  Threaded View
davidredekop
50%
50%
davidredekop,
User Rank: Apprentice
7/12/2018 | 10:56:21 PM
What if everybody did it
Curtis, I always enjoy watching you on TWIET, thanks for this article. Well thought out!

Your tweet asked "What would you add to the list?" on your tweet. I'd add that a very simple but powerful technique is to force DNS to an on-premise service. It's technically hijacking, but with a positive outcome. You don't allow any endpoints to make Internet-bound DNS queries but instead force them to use local DNS server(s). The designated servers are the only ones able to make recursive or upstream queries.

This has the simple effect of *preventing* participation in any DNS reflection attack. We do this as a basic standard at www.adamnet.works for all of our products.

By the way, the same thing should be done for NTP since it's also a very common protocol used by endpoints and abused for UDP reflection attacks.

Hijacking NTP and DNS, if it were done as a basic standard on Internet exit points, would disable all future reflection attacks attempting to use those protocols and their respective public servers.
No SOPA
50%
50%
No SOPA,
User Rank: Ninja
7/10/2018 | 4:02:11 PM
Efficient Malicious Packet Capture Through Advanced DNS Sinkhole
I read a great paper titled "Efficient Malicious Packet Capture Through Advanced DNS Sinkhole" (Hyun Mi Jung, Haeng Gon Lee, Jang Won Choi). It caught my eye by stating in the Abstract that among the current botnet countermeasures, "DNS sinkhole is known as the best practice in the world."

Like anything that is based on the collection and analysis of data, however, it seems that, to be most effective, one might have to get hardware to cope with the overhead, which would go against the idea in this article that you won't have to run out and start spending money for hardware. That overhead comes from critical elements in this model, though, that make it ideal and useful to both the whole InfoSec community and organizations looking to be more proactive in their security planning.

In brief, as described by this paper, you'd have a combination of systems that monitor, analyze and detect, then re-direct as necessary. So, if an organization has a PC that is infected by a malicious bot in a target security control agency AND initializes a connection to a command and control (C&C) system (the malicious controller of the bot), that traffic is detected as part of the monitored traffic at the target organization, and then redirected to a DNS sinkhole server rather than the real DNS server. The catch is the incoming traffic has to be recognized as part of a malicious domain (or identified as one realtime with AI support and access to a database of profiles such as this project collects). When those queries go to the sinkhole server {in this paper's model, at least), they are routed through the Korea Research Environment Open NETwork (KREONET) and the target organization's Threat Management System (TMS). The point of this is to collect all the traffic from the zombie PC with the bot into a log to better understand its purpose, collect intel on the bot and develop a profile of the attacker.

Sinkholes have been used to help thwart WannaCry and Avalanche threats. I'm not sure how sophisticated those sinkholes were, but as defined in this paper, probably not every organization could implement such an architecture. But as malicious bots, whether stationed on remote web servers or installed via malware on PCs, become rampant, this model of redirection and analysis, and ideally data sharing among the InfoSec community, is more crucial than ever to keep threats minimized and to better arm the InfoSec community as a whole.
New Cold Boot Attack Gives Hackers the Keys to PCs, Macs
Kelly Sheridan, Staff Editor, Dark Reading,  9/13/2018
Yahoo Class-Action Suits Set for Settlement
Dark Reading Staff 9/17/2018
RDP Ports Prove Hot Commodities on the Dark Web
Kelly Sheridan, Staff Editor, Dark Reading,  9/17/2018
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Current Issue
Flash Poll
How Data Breaches Affect the Enterprise
How Data Breaches Affect the Enterprise
This report, offers new data on the frequency of data breaches, the losses they cause, and the steps that organizations are taking to prevent them in the future. Read the report today!
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2018-17182
PUBLISHED: 2018-09-19
An issue was discovered in the Linux kernel through 4.18.8. The vmacache_flush_all function in mm/vmacache.c mishandles sequence number overflows. An attacker can trigger a use-after-free (and possibly gain privileges) via certain thread creation, map, unmap, invalidation, and dereference operations...
CVE-2018-17144
PUBLISHED: 2018-09-19
Bitcoin Core 0.14.x before 0.14.3, 0.15.x before 0.15.2, and 0.16.x before 0.16.3 and Bitcoin Knots 0.14.x through 0.16.x before 0.16.3 allow a remote denial of service (application crash) exploitable by miners via duplicate input. An attacker can make bitcoind or Bitcoin-Qt crash.
CVE-2017-3912
PUBLISHED: 2018-09-18
Bypassing password security vulnerability in McAfee Application and Change Control (MACC) 7.0.1 and 6.2.0 allows authenticated users to perform arbitrary command execution via a command-line utility.
CVE-2018-6690
PUBLISHED: 2018-09-18
Accessing, modifying, or executing executable files vulnerability in Microsoft Windows client in McAfee Application and Change Control (MACC) 8.0.0 Hotfix 4 and earlier allows authenticated users to execute arbitrary code via file transfer from external system.
CVE-2018-6693
PUBLISHED: 2018-09-18
An unprivileged user can delete arbitrary files on a Linux system running ENSLTP 10.5.1, 10.5.0, and 10.2.3 Hotfix 1246778 and earlier. By exploiting a time of check to time of use (TOCTOU) race condition during a specific scanning sequence, the unprivileged user is able to perform a privilege escal...