Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Partner Perspectives

11/19/2014
11:44 AM
Liviu Arsene
Liviu Arsene
Partner Perspectives
Connect Directly
Twitter
Google+
LinkedIn
RSS
50%
50%

Machine Learning: A Solution to Today's Security Threats & One Step Closer to AI

Algorithms can identify threats that have been missed by traditional security mechanisms.11/19/2014 11:44:00 AM

Artificial intelligence is becoming a popular term loosely used whenever a new system is able to come up with high probabilistic results for solving a specific problem. Although it may be very accurate when providing answers to a specific problem, we’re still far from creating a truly self-conscious entity.

Machine-learning algorithms can solve problems that we currently cannot address using conventional methods. Chances are that 99.97% of the time these algorithms can identify threats that were missed by traditional security mechanisms. Because they exhibit some form of engineered statistical intelligence, it’s safe to assume that such algorithms, in conjunction with other technologies, could be used to explore advances in artificial intelligence.

Protecting the abundance of Internet-connected devices has become a daunting task -- one that can be overcome by using self-learning algorithms and technologies that can hammer even previously unknown threats.

For instance, imagine feeding such algorithms with information about known malware samples and security vulnerabilities to identify yet-unknown threats. By observing patterns and facts, security-centric machine-learning algorithms can derive statistical inferences leading to positive identification of new and unknown threats. While this is not Hollywood-style artificial intelligence, these systems succeed where traditional approaches fail. It’s important to realize that you cannot use a single all-knowing machine-learning algorithm when talking about security. Having multiple systems that constantly crunch specific types of data on various timespans is key to augmenting security and neutralizing exotic threats.

The silver bullet that can solve any type of problem is actually more like a silver shotgun shell -- a sum of systems. For this reason, when sticking to a particular field of interest, say, detecting advanced threats, engineering automated self-learning algorithms that can draw probabilistic outcomes based on analyzed data sets is highly efficient and accurate.

Using the brain paradigm to describe these automated systems makes sense when talking about the learning capabilities of such algorithms. Although the analogy is somewhat misleading from an academic point of view, it might bring perspective. If the human brain can deal with cluttered information, such as object recognition in images and their relation with each other, machine-learning algorithms can also be trained to individually identify objects, but without the advanced inference capabilities of human brainpower. Although they cannot currently answer questions, such as “How do I feel when looking at those balloons?” they are great at extrapolating statistical probabilities based on previous knowledge and answering questions such as “How many balloons are there?” or “How many people are holding balloons?”

Consequently, there is a constant need to develop and tweak these algorithms, especially since current statistics show that more than 12 billion devices will be connected to the Internet by the end of 2014, according to Strategy Analytics. Imagine a world where any device may become a target, where your microwave will suddenly start sending spam or your refrigerator will place bogus food orders. Now imagine having systems that understand how threats behave when attacking any type of device or operating system.

Although current security-centric machine-learning algorithms are far from taking over the world, Skynet-style, they are more than capable of thumping advanced security threats and protecting Internet-of-Things devices.

Liviu Arsene is a senior e-threat analyst for Bitdefender, with a strong background in security and technology. Reporting on global trends and developments in computer security, he writes about malware outbreaks and security incidents while coordinating with technical and ... View Full Bio
Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
COVID-19: Latest Security News & Commentary
Dark Reading Staff 7/2/2020
Ripple20 Threatens Increasingly Connected Medical Devices
Kelly Sheridan, Staff Editor, Dark Reading,  6/30/2020
DDoS Attacks Jump 542% from Q4 2019 to Q1 2020
Dark Reading Staff 6/30/2020
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
How Cybersecurity Incident Response Programs Work (and Why Some Don't)
This Tech Digest takes a look at the vital role cybersecurity incident response (IR) plays in managing cyber-risk within organizations. Download the Tech Digest today to find out how well-planned IR programs can detect intrusions, contain breaches, and help an organization restore normal operations.
Flash Poll
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2020-9498
PUBLISHED: 2020-07-02
Apache Guacamole 1.1.0 and older may mishandle pointers involved inprocessing data received via RDP static virtual channels. If a userconnects to a malicious or compromised RDP server, a series ofspecially-crafted PDUs could result in memory corruption, possiblyallowing arbitrary code to be executed...
CVE-2020-3282
PUBLISHED: 2020-07-02
A vulnerability in the web-based management interface of Cisco Unified Communications Manager, Cisco Unified Communications Manager Session Management Edition, Cisco Unified Communications Manager IM & Presence Service, and Cisco Unity Connection could allow an unauthenticated, remote attack...
CVE-2020-5909
PUBLISHED: 2020-07-02
In versions 3.0.0-3.5.0, 2.0.0-2.9.0, and 1.0.1, when users run the command displayed in NGINX Controller user interface (UI) to fetch the agent installer, the server TLS certificate is not verified.
CVE-2020-5910
PUBLISHED: 2020-07-02
In versions 3.0.0-3.5.0, 2.0.0-2.9.0, and 1.0.1, the Neural Autonomic Transport System (NATS) messaging services in use by the NGINX Controller do not require any form of authentication, so any successful connection would be authorized.
CVE-2020-5911
PUBLISHED: 2020-07-02
In versions 3.0.0-3.5.0, 2.0.0-2.9.0, and 1.0.1, the NGINX Controller installer starts the download of Kubernetes packages from an HTTP URL On Debian/Ubuntu system.