Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Partner Perspectives //

bitdefender

1/23/2017
11:00 AM
Liviu Arsene
Liviu Arsene
Partner Perspectives
Connect Directly
Twitter
Google+
LinkedIn
RSS
100%
0%

Machine Learning In Cybersecurity Warrants A Silver Shotgun Shell Approach

When protecting physical or virtual endpoints, it's vital to have more than one layer of defense against malware.

Cybersecurity is arguably the most rapidly evolving industry, driven by the digitalization of services, our dependency on Internet-connected devices, and the proliferation of malware and hacking attempts in search for data and financial gain. More than 600 million malware samples currently stalk the Internet, and that’s just the tip of the iceberg in terms of cyber threats.

Advanced persistent threats, zero-day vulnerabilities and cyber espionage cannot be identified and stopped by traditional signature-based detection mechanisms. Behavior-based detection and machine learning are just a few technologies in the arsenal of some security companies, with the latter considered by some as the best line of defense.

What is Machine Learning?
The simplest definition is that it’s a set of algorithms that can learn by themselves. Although we’re far from achieving anything remotely similar to human-level capabilities – or even consciousness – these algorithms are pretty handy when properly trained to perform a specific repetitive task. Unlike humans, who tire easily, a machine learning algorithm doesn’t complain and can go through far more data in a short amount of time.

The concept has been around for decades, starting with Arthur Samuel in 1959, and at its core is the drive to overcome static programming instructions by enabling an algorithm to make predictions and decisions based on input data. Consequently, the training data used by the machine learning algorithm to create a model is what makes the algorithm output statistically correct. The expression “garbage in, garbage out” has been widely used to express poor-quality input that produces incorrect or faulty output in machine learning algorithms.

Is There a Single Machine Learning Algorithm?
While the term is loosely used across all fields, machine learning is not an algorithm per se, but a field of study. The various types of algorithms take different approaches towards solving some really specific problems, but it’s all just statistics-based math and probabilities. Decision trees, neural networks, deep learning, genetic algorithms and Bayesian networks are just a few approaches towards developing machine learning algorithms that can solve specific problems.

Breaking down machine learning into the types of problems and tasks they try to solve revolves around the methods used to solve problems. Supervised learning is one such method, involving training the algorithm to learn a general rule based on examples of inputs and desired outputs. Unsupervised learning and reinforcement learning are also commonly used in cybersecurity to enable the algorithm to discover for itself hidden patterns in data, or dynamically interact with malware samples to achieve a goal (e.g. malware detection) based on feedback in the form of penalties and rewards.

Is Machine Learning Enough for Cybersecurity?
Some security companies argue that machine learning technologies are enough to identify and detect all types of attacks on companies and organizations. Regardless of how well trained an algorithm is, though, there is a chance it will “miss” some malware samples or behaviors. Even among a large set of machine learning algorithms, each trained to identify a specific malware strand or a specific behavior, chances are that one of them could miss something.

This silver shotgun shell approach towards security-centric machine learning algorithms is definitely the best implementation, as more task-oriented algorithms are not only more accurate and reliable, but also more efficient. But the misconception that that’s all cybersecurity should be about is misguided.

When protecting physical or virtual endpoints, it’s vital to have more layers of defense against malware. Behavior-based detection that monitors processes and applications throughout their entire execution lifetime, web filtering and application control are vital in covering all possible attack vectors that could compromise a system.

Liviu Arsene is a senior e-threat analyst for Bitdefender, with a strong background in security and technology. Reporting on global trends and developments in computer security, he writes about malware outbreaks and security incidents while coordinating with technical and ... View Full Bio
Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
COVID-19: Latest Security News & Commentary
Dark Reading Staff 7/9/2020
Russian Cyber Gang 'Cosmic Lynx' Focuses on Email Fraud
Kelly Sheridan, Staff Editor, Dark Reading,  7/7/2020
Why Cybersecurity's Silence Matters to Black Lives
Tiffany Ricks, CEO, HacWare,  7/8/2020
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
Special Report: Computing's New Normal, a Dark Reading Perspective
This special report examines how IT security organizations have adapted to the "new normal" of computing and what the long-term effects will be. Read it and get a unique set of perspectives on issues ranging from new threats & vulnerabilities as a result of remote working to how enterprise security strategy will be affected long term.
Flash Poll
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2020-15105
PUBLISHED: 2020-07-10
Django Two-Factor Authentication before 1.12, stores the user's password in clear text in the user session (base64-encoded). The password is stored in the session when the user submits their username and password, and is removed once they complete authentication by entering a two-factor authenticati...
CVE-2020-11061
PUBLISHED: 2020-07-10
In Bareos Director less than or equal to 16.2.10, 17.2.9, 18.2.8, and 19.2.7, a heap overflow allows a malicious client to corrupt the director's memory via oversized digest strings sent during initialization of a verify job. Disabling verify jobs mitigates the problem. This issue is also patched in...
CVE-2020-4042
PUBLISHED: 2020-07-10
Bareos before version 19.2.8 and earlier allows a malicious client to communicate with the director without knowledge of the shared secret if the director allows client initiated connection and connects to the client itself. The malicious client can replay the Bareos director's cram-md5 challenge to...
CVE-2020-11081
PUBLISHED: 2020-07-10
osquery before version 4.4.0 enables a priviledge escalation vulnerability. If a Window system is configured with a PATH that contains a user-writable directory then a local user may write a zlib1.dll DLL, which osquery will attempt to load. Since osquery runs with elevated privileges this enables l...
CVE-2020-6114
PUBLISHED: 2020-07-10
An exploitable SQL injection vulnerability exists in the Admin Reports functionality of Glacies IceHRM v26.6.0.OS (Commit bb274de1751ffb9d09482fd2538f9950a94c510a) . A specially crafted HTTP request can cause SQL injection. An attacker can make an authenticated HTTP request to trigger this vulnerabi...