Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Risk

6/25/2008
07:30 PM
50%
50%

A Tipping Point For The Trusted Platform Module?

To achieve widespread adoption, TPM must overcome challenges to encryption key management.

The Trusted Platform Module is a hardware component built into PCs and laptops. It's designed to securely generate and store encryption keys, passwords, and digital certificates. The Trusted Platform Module, or TPM, can be used for a variety of purposes, such as encrypting files and folders and authenticating users, applications, and computers.

According to IDC, nearly 250 million PCs will have shipped with TPM hardware by 2009. In theory, this level of deployment means the module should be the foundation for a variety of useful applications widely embraced by enterprises and individual users. In reality, there are few apps that take advantage of TPM. A major reason is the complexity of managing TPM itself and encryption keys; another may be a lack of awareness of the module and its capabilities.

The Trusted Platform Module is developed by the Trusted Computing Group, a nonprofit organization that designs and develops open specifications for trusted computing. It has approximately 170 members. The module was designed to help organizations protect sensitive information and enable strong authentication for business use and e-commerce transactions. TPM's hardware-based key-generation capabilities make it very secure against many common attacks.

InformationWeek Reports

We'll examine why TPM adoption hasn't matched physical deployments and look at the prospects for wider use of the technology.

A BRIEF HISTORY OF TPM
Along with some IBM research, Microsoft's Trustworthy Computing initiative drove much of the early work in the development of TPM. Along with a number of other practices, Microsoft envisioned the beginnings of a more secure operating environment that included a hardware-based cryptographic root of trust (see story, "TPM: A Matter Of Trust"). Microsoft called this root the Next-Generation Secure Computing Base. The name that many folks knew it as, however, was the internal code name Palladium, after the mythical statue thought to have protected Troy.

Unfortunately for the Trusted Computing Group, Palladium generated a firestorm of negative feedback. Critics argued that Palladium was primarily designed to take control away from the owner of a computer, and privacy rights advocates were riled up over the fact that it was difficult for TPM to allow sufficiently anonymous verifiable transactions. Fortunately, the 1.2 version of the specification has significantly improved the ability for TPM to be used in a way that maintains privacy while still achieving security.

The primary criticism was that one of the stated design goals of TPM is that it could be used to create supposedly unhackable digital rights management systems. DRM technology aims to prevent users from copying and sharing digital content, such as music and movies. Many in the technology community argue that DRM restricts their fair-use rights and pits users against their own computers.

TPM Timeline

(click image for larger view)

 

Recommended Reading:

Previous
1 of 2
Next
Comment  | 
Print  | 
More Insights
Comments
Threaded  |  Newest First  |  Oldest First
COVID-19: Latest Security News & Commentary
Dark Reading Staff 8/3/2020
Pen Testers Who Got Arrested Doing Their Jobs Tell All
Kelly Jackson Higgins, Executive Editor at Dark Reading,  8/5/2020
Browsers to Enforce Shorter Certificate Life Spans: What Businesses Should Know
Kelly Sheridan, Staff Editor, Dark Reading,  7/30/2020
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Current Issue
Special Report: Computing's New Normal, a Dark Reading Perspective
This special report examines how IT security organizations have adapted to the "new normal" of computing and what the long-term effects will be. Read it and get a unique set of perspectives on issues ranging from new threats & vulnerabilities as a result of remote working to how enterprise security strategy will be affected long term.
Flash Poll
The Changing Face of Threat Intelligence
The Changing Face of Threat Intelligence
This special report takes a look at how enterprises are using threat intelligence, as well as emerging best practices for integrating threat intel into security operations and incident response. Download it today!
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2020-17366
PUBLISHED: 2020-08-05
An issue was discovered in NLnet Labs Routinator 0.1.0 through 0.7.1. It allows remote attackers to bypass intended access restrictions or to cause a denial of service on dependent routing systems by strategically withholding RPKI Route Origin Authorisation ".roa" files or X509 Certificate...
CVE-2020-9036
PUBLISHED: 2020-08-05
Jeedom through 4.0.38 allows XSS.
CVE-2020-15127
PUBLISHED: 2020-08-05
In Contour ( Ingress controller for Kubernetes) before version 1.7.0, a bad actor can shut down all instances of Envoy, essentially killing the entire ingress data plane. GET requests to /shutdown on port 8090 of the Envoy pod initiate Envoy's shutdown procedure. The shutdown procedure includes flip...
CVE-2020-15132
PUBLISHED: 2020-08-05
In Sulu before versions 1.6.35, 2.0.10, and 2.1.1, when the "Forget password" feature on the login screen is used, Sulu asks the user for a username or email address. If the given string is not found, a response with a `400` error code is returned, along with a error message saying that th...
CVE-2020-7298
PUBLISHED: 2020-08-05
Unexpected behavior violation in McAfee Total Protection (MTP) prior to 16.0.R26 allows local users to turn off real time scanning via a specially crafted object making a specific function call.