Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Risk

11/14/2011
05:33 PM
50%
50%

Data Mining Snares Health Insurance Fraud

LexisNexis applies predictive modeling, a massive database, and high-performance computing cluster technology to spot health insurance fraud before claims are paid.

17 Leading EHR Vendors
(click image for larger view)
Slideshow: 17 Leading EHR Vendors
As Medicare searches for ways to head off fraud, private payers are starting to embrace predictive modeling in their own quest to stamp out insurance fraud before claims are paid. "I think the big move on the payer side is to pre-pay," according to Bill Fox, senior director of LexisNexis Health Care, a year-and-a-half-old division of online information giant LexisNexis, a subsidiary of Reed Elsevier. That means payers are trying to examine claims before the money goes out the door. "Virtually every big payer we talk to is thinking about it," Fox told InformationWeek Healthcare.

LexisNexis is among those joining the movement to detect fraud with advanced data mining by building analytics and risk-management capabilities into its vast data platforms. The company has built databases on 250 million people in the U.S., culled from 35 billion public records, and now is applying its analytics capabilities to health insurance. The company analyzes its data using its supercomputer platform, which is built on top of high-performance computing cluster technology, and was made available earlier this year as an open-source platform through a new LexisNexis subsidiary called HPCC Systems. Fox says this allows for fast queries of "massive amounts of big data." The technology helps disambiguate and link data, piecing together nuggets of information to reveal collusion, both proactively and after some evidence of wrongdoing has been found.

[Legally, EHRs are double-edged swords: They protect clinicians from malpractice litigation but also put them at greater risk. See Will Your EHR Land You In Court?]

Such analysis looks for complex patterns in the diagnosis, treatment, and billing of patient encounters that aren't easily spotted in traditional claims review.

In targeting health insurance fraud, LexisNexis looks at 15 to 18 metrics on claims and individual providers, then assigns a risk score to each healthcare provider. The system scouts for risks inherent in claims and risks inherent in each person, according to Fox, an attorney by trade who previously handled insurance fraud cases at a major law firm and has worked with the U.S. attorney's office in Philadelphia to investigate white-collar crime, including cybercrime.

For years, payers have relied on claims edits to spot errors, but they haven't been able to edit for patterns suggesting fraud because an edit focuses on a single claim and it's impossible to identify a pattern with one claim. But predictive modeling and other analytics tools can scan a series of claims to flag individual physicians and coders for extra review, Fox said, allowing payers to incorporate extra edits into future claims.

"Predictive modeling looks at outliers," Fox noted. Unusual values could indicate fraud or just simply improper coding or a physician who practices in a certain way, he said. In the past, there was no easy way of finding many errors and other unusual patterns that might merit further investigation.

Clients do tend to be payers, who are looking to stamp out waste and not be forced to pay for claims that they later learn to be improper. But Fox said that institutions such as large providers, integrated delivery networks, and accountable care organizations might be interested in this kind of service to avoid trouble with Medicare auditors and the U.S. Department of Justice as federal officials step up their anti-fraud activities.

With the advent of accountable care organizations and other elements of healthcare reform, financial risk is going to be shared among multiple entities, offering yet another reason to stamp out internal waste and fraud, according to Fox. "We'll likely see more interest from providers," he said.

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
anon7968745131
50%
50%
anon7968745131,
User Rank: Apprentice
11/28/2013 | 6:22:57 AM
business intelligence services
SQIAR (http://www.sqiar.com/solutions/technology/tableau) is a leading global consultancy which provides innovative business intelligence services to small and medium size (SMEs) businesses. Our agile approach provides organizations with breakthrough insights and powerful data visualizations to rapidly analyse multiple aspects of their business in perspectives that matter most.
Mobile Banking Malware Up 50% in First Half of 2019
Kelly Sheridan, Staff Editor, Dark Reading,  1/17/2020
Exploits Released for As-Yet Unpatched Critical Citrix Flaw
Jai Vijayan, Contributing Writer,  1/13/2020
Microsoft to Officially End Support for Windows 7, Server 2008
Kelly Sheridan, Staff Editor, Dark Reading,  1/13/2020
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Write a Caption, Win a Starbucks Card! Click Here
Latest Comment: This comment is waiting for review by our moderators.
Current Issue
The Year in Security: 2019
This Tech Digest provides a wrap up and overview of the year's top cybersecurity news stories. It was a year of new twists on old threats, with fears of another WannaCry-type worm and of a possible botnet army of Wi-Fi routers. But 2019 also underscored the risk of firmware and trusted security tools harboring dangerous holes that cybercriminals and nation-state hackers could readily abuse. Read more.
Flash Poll
[Just Released] How Enterprises are Attacking the Cybersecurity Problem
[Just Released] How Enterprises are Attacking the Cybersecurity Problem
Organizations have invested in a sweeping array of security technologies to address challenges associated with the growing number of cybersecurity attacks. However, the complexity involved in managing these technologies is emerging as a major problem. Read this report to find out what your peers biggest security challenges are and the technologies they are using to address them.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2020-7227
PUBLISHED: 2020-01-18
Westermo MRD-315 1.7.3 and 1.7.4 devices have an information disclosure vulnerability that allows an authenticated remote attacker to retrieve the source code of different functions of the web application via requests that lack certain mandatory parameters. This affects ifaces-diag.asp, system.asp, ...
CVE-2019-15625
PUBLISHED: 2020-01-18
A memory usage vulnerability exists in Trend Micro Password Manager 3.8 that could allow an attacker with access and permissions to the victim's memory processes to extract sensitive information.
CVE-2019-19696
PUBLISHED: 2020-01-18
A RootCA vulnerability found in Trend Micro Password Manager for Windows and macOS exists where the localhost.key of RootCA.crt might be improperly accessed by an unauthorized party and could be used to create malicious self-signed SSL certificates, allowing an attacker to misdirect a user to phishi...
CVE-2019-19697
PUBLISHED: 2020-01-18
An arbitrary code execution vulnerability exists in the Trend Micro Security 2019 (v15) consumer family of products which could allow an attacker to gain elevated privileges and tamper with protected services by disabling or otherwise preventing them to start. An attacker must already have administr...
CVE-2019-20357
PUBLISHED: 2020-01-18
A Persistent Arbitrary Code Execution vulnerability exists in the Trend Micro Security 2020 (v160 and 2019 (v15) consumer familiy of products which could potentially allow an attacker the ability to create a malicious program to escalate privileges and attain persistence on a vulnerable system.