Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Perimeter

12/26/2009
12:15 PM
Adrian Lane
Adrian Lane
Commentary
50%
50%

Data Masking Primer

Data masking is an approach to data security used to conceal sensitive information. Unlike encryption, which renders data unusable until it is restored to clear text, masking is designed to protect data while retaining business functionality.

Data masking is an approach to data security used to conceal sensitive information. Unlike encryption, which renders data unusable until it is restored to clear text, masking is designed to protect data while retaining business functionality.Masking is most commonly used with relational databases, maintaining the complex data relationships that database applications rely on. Masking, in essence, scrambles data in such a way as to render individual data meaningless, but still provides business use and database functional dependencies. One example: shuffling patient care data so that individual data points cannot be traced to one person, but medical trend data can still be derived from the database as a whole.

The two most common business use cases for masking are testing and analytics. Using real customer data is the best way to confirm application functionality, but moving sensitive production data (patient records, financial transactions, customer history) into lower security test systems is very risky. Similarly, so is moving sensitive data into business analytics and decision-support systems, with correspondingly greater exposure to loss. Masking provides test applications and business analytics with valuable data and simultaneously secure sensitive information.

"Data masking" is the industry accepted term for this market segment. Masking implies concealment, but not alterations; most data masking products alter the original copy. There are many other ways to scramble data, including transposition, substitution, obfuscation, concatenation, statistical averaging, and hashing algorithms (just to name a few). These technologies transform information into something that looks like the original, but with the original copy obliterated, and the new data cannot be reverse-engineered.

Data masking is commonly employed using three basic strategies:

1. ETL (Extract, Transform and Load): This describes the process most commonly associated with data masking. As data is queried or archived from the database, it is run through a transformational algorithm and then reloaded into a test or decision-support database. The original production database remains intact, but the copies have been transformed into a safe state.

2. Dynamic In Place Masking: This is a new catchphrase for the masking market and, unlike ETL, does not create a new copy. Dynamic masking keeps the original data, but creates a transformation "mask" dynamically, as queries are received. Implemented as a database "view" or trigger, query results are transformed before returned to the user. Depending on users' credentials, they may get unaltered data or masked data. This allows masking to be run in parallel to the original data set, using the same database installation, but it comes at some cost in performance.

3. Static In Place Masking: In this model, original data within the database undergoes obfuscation in place. The vendors provide the capability to make the changes without breaking data relationships. This model allows for complex, multitransformational algorithms to be applied simultaneously to keep obfuscated data value close to the original. There is no performance degradation or additional space requirements, but it requires periodic checking to mask new data entries.

Adrian Lane is an analyst/CTO with Securosis LLC, an independent security consulting practice. Special to Dark Reading. Adrian Lane is a Security Strategist and brings over 25 years of industry experience to the Securosis team, much of it at the executive level. Adrian specializes in database security, data security, and secure software development. With experience at Ingres, Oracle, and ... View Full Bio

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
Why Cyber-Risk Is a C-Suite Issue
Marc Wilczek, Digital Strategist & CIO Advisor,  11/12/2019
Unreasonable Security Best Practices vs. Good Risk Management
Jack Freund, Director, Risk Science at RiskLens,  11/13/2019
Breaches Are Inevitable, So Embrace the Chaos
Ariel Zeitlin, Chief Technology Officer & Co-Founder, Guardicore,  11/13/2019
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Current Issue
Navigating the Deluge of Security Data
In this Tech Digest, Dark Reading shares the experiences of some top security practitioners as they navigate volumes of security data. We examine some examples of how enterprises can cull this data to find the clues they need.
Flash Poll
Rethinking Enterprise Data Defense
Rethinking Enterprise Data Defense
Frustrated with recurring intrusions and breaches, cybersecurity professionals are questioning some of the industrys conventional wisdom. Heres a look at what theyre thinking about.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2019-13581
PUBLISHED: 2019-11-15
An issue was discovered in Marvell 88W8688 Wi-Fi firmware before version p52, as used on Tesla Model S/X vehicles manufactured before March 2018, via the Parrot Faurecia Automotive FC6050W module. A heap-based buffer overflow allows remote attackers to cause a denial of service or execute arbitrary ...
CVE-2019-13582
PUBLISHED: 2019-11-15
An issue was discovered in Marvell 88W8688 Wi-Fi firmware before version p52, as used on Tesla Model S/X vehicles manufactured before March 2018, via the Parrot Faurecia Automotive FC6050W module. A stack overflow could lead to denial of service or arbitrary code execution.
CVE-2019-6659
PUBLISHED: 2019-11-15
On version 14.0.0-14.1.0.1, BIG-IP virtual servers with TLSv1.3 enabled may experience a denial of service due to undisclosed incoming messages.
CVE-2019-6660
PUBLISHED: 2019-11-15
On BIG-IP 14.1.0-14.1.2, 14.0.0-14.0.1, and 13.1.0-13.1.1, undisclosed HTTP requests may consume excessive amounts of systems resources which may lead to a denial of service.
CVE-2019-6661
PUBLISHED: 2019-11-15
When the BIG-IP APM 14.1.0-14.1.2, 14.0.0-14.0.1, 13.1.0-13.1.3.1, 12.1.0-12.1.4.1, or 11.5.1-11.6.5 system processes certain requests, the APD/APMD daemon may consume excessive resources.