Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.


12:15 PM
Adrian Lane
Adrian Lane

Data Masking Primer

Data masking is an approach to data security used to conceal sensitive information. Unlike encryption, which renders data unusable until it is restored to clear text, masking is designed to protect data while retaining business functionality.

Data masking is an approach to data security used to conceal sensitive information. Unlike encryption, which renders data unusable until it is restored to clear text, masking is designed to protect data while retaining business functionality.Masking is most commonly used with relational databases, maintaining the complex data relationships that database applications rely on. Masking, in essence, scrambles data in such a way as to render individual data meaningless, but still provides business use and database functional dependencies. One example: shuffling patient care data so that individual data points cannot be traced to one person, but medical trend data can still be derived from the database as a whole.

The two most common business use cases for masking are testing and analytics. Using real customer data is the best way to confirm application functionality, but moving sensitive production data (patient records, financial transactions, customer history) into lower security test systems is very risky. Similarly, so is moving sensitive data into business analytics and decision-support systems, with correspondingly greater exposure to loss. Masking provides test applications and business analytics with valuable data and simultaneously secure sensitive information.

"Data masking" is the industry accepted term for this market segment. Masking implies concealment, but not alterations; most data masking products alter the original copy. There are many other ways to scramble data, including transposition, substitution, obfuscation, concatenation, statistical averaging, and hashing algorithms (just to name a few). These technologies transform information into something that looks like the original, but with the original copy obliterated, and the new data cannot be reverse-engineered.

Data masking is commonly employed using three basic strategies:

1. ETL (Extract, Transform and Load): This describes the process most commonly associated with data masking. As data is queried or archived from the database, it is run through a transformational algorithm and then reloaded into a test or decision-support database. The original production database remains intact, but the copies have been transformed into a safe state.

2. Dynamic In Place Masking: This is a new catchphrase for the masking market and, unlike ETL, does not create a new copy. Dynamic masking keeps the original data, but creates a transformation "mask" dynamically, as queries are received. Implemented as a database "view" or trigger, query results are transformed before returned to the user. Depending on users' credentials, they may get unaltered data or masked data. This allows masking to be run in parallel to the original data set, using the same database installation, but it comes at some cost in performance.

3. Static In Place Masking: In this model, original data within the database undergoes obfuscation in place. The vendors provide the capability to make the changes without breaking data relationships. This model allows for complex, multitransformational algorithms to be applied simultaneously to keep obfuscated data value close to the original. There is no performance degradation or additional space requirements, but it requires periodic checking to mask new data entries.

Adrian Lane is an analyst/CTO with Securosis LLC, an independent security consulting practice. Special to Dark Reading. Adrian Lane is a Security Strategist and brings over 25 years of industry experience to the Securosis team, much of it at the executive level. Adrian specializes in database security, data security, and secure software development. With experience at Ingres, Oracle, and ... View Full Bio


Recommended Reading:

Comment  | 
Print  | 
More Insights
Newest First  |  Oldest First  |  Threaded View
COVID-19: Latest Security News & Commentary
Dark Reading Staff 5/28/2020
Stay-at-Home Orders Coincide With Massive DNS Surge
Robert Lemos, Contributing Writer,  5/27/2020
Register for Dark Reading Newsletters
White Papers
Cartoon Contest
Write a Caption, Win a Starbucks Card! Click Here
Latest Comment: Can you smell me now?
Current Issue
How Cybersecurity Incident Response Programs Work (and Why Some Don't)
This Tech Digest takes a look at the vital role cybersecurity incident response (IR) plays in managing cyber-risk within organizations. Download the Tech Digest today to find out how well-planned IR programs can detect intrusions, contain breaches, and help an organization restore normal operations.
Flash Poll
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
PUBLISHED: 2020-05-29
There is an Incorrect Authorization vulnerability in Micro Focus Service Management Automation (SMA) product affecting version 2018.05 to 2020.02. The vulnerability could be exploited to provide unauthorized access to the Container Deployment Foundation.
PUBLISHED: 2020-05-29
A Denial of Service vulnerability in MuleSoft Mule CE/EE 3.8.x, 3.9.x, and 4.x released before April 7, 2020, could allow remote attackers to submit data which can lead to resource exhaustion.
PUBLISHED: 2020-05-29
All versions of snyk-broker before 4.72.2 are vulnerable to Arbitrary File Read. It allows arbitrary file reads for users who have access to Snyk's internal network by appending the URL with a fragment identifier and a whitelisted path e.g. `#package.json`
PUBLISHED: 2020-05-29
All versions of snyk-broker after 4.72.0 including and before 4.73.1 are vulnerable to Arbitrary File Read. It allows arbitrary file reads to users with access to Snyk's internal network of any files ending in the following extensions: yaml, yml or json.
PUBLISHED: 2020-05-29
All versions of snyk-broker before 4.73.1 are vulnerable to Information Exposure. It logs private keys if logging level is set to DEBUG.