Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Perimeter

7/26/2010
10:00 AM
Adrian Lane
Adrian Lane
Commentary
50%
50%

What You Should Know About Tokenization

A week ago Visa released a set of best practices and recommendations for tokenization. Unfortunately, "best practices" leaves plenty of room for poor implementations.

A week ago Visa released a set of best practices and recommendations for tokenization. Unfortunately, "best practices" leaves plenty of room for poor implementations.A few months back I wrote a post about token deployment strategies for meeting PCI compliance. What I did not discuss were some of the differences between the different tokenization technologies on the market.

Token solutions have become popular because they remove credit card data from most processing systems, thus eliminating them from inspection during PCI assessment. For example, if you have a dozen systems (order entry, customer management, payment gateways, general ledger, etc.) and you substitute a token for the Primacy Account Number, then you remove a huge portion of the PCI audit. For a lot of merchants, that means a savings of 50 percent. No credit card numbers, no security threat, so no reason to poke around.

But that assumes the token is secure. The critical part of a token strategy is to ensure the token does not betray the original credit card number. Tokens created via any mathematical function, be it cryptography or hashing, always start with the account number. That means there is a chance they can be reversed back into the original if not carefully implemented or deployed. But we know from experience that poorly implemented algorithms, bad entropy or pseudo-random number generators, or improper use of padding/salting results in tokens that are easy to hack. The only two recommendations made by Visa are for mathematical derivatives, and there is considerable leeway in its guidance. In other words, a solution that meets Visa's criteria can provide poor security.

What does this mean to you? Several things:

1. Visa should have included in its recommendation the use of completely random numbers. This is far more secure because there is simply no way to reverse-engineer the credit card number from the token given there is no mathematical relationship. The only way to gain access to the original data is through the token server itself. I recommend you select this option if it is available from your vendor.

2. If you are looking at a solution that uses cryptographic functions, then you need to understand you will be using some form of a format-preserving encryption to form the token. Despite being based on accepted strong cryptographic algorithms, the format-preserving options are not specifically endorsed by Visa or the PCI Standards Council. Make sure your vendor has had its product professionally reviewed by a noted expert in the field of cryptanalysis. Also, verify that your auditor will remove systems using encryption from the scope of the audit -- otherwise you miss out on cost savings.

3. If you are looking at a solution that uses a hashing variant, then first make sure the method used is acceptable to Visa and PCI. Second, verify that the vendor implementation has been reviewed by the cryptanalysis community. Finally, see if you can locate a product that provides random salt values for each token. Static salt values or salting with a finite set of merchant IDs offers poor security and makes the hashes vulnerable to dictionary attacks.

Take the time to verify these options so you can get full value for your tokenization investment.

Adrian Lane is an analyst/CTO with Securosis LLC, an independent security consulting practice. Special to Dark Reading. Adrian Lane is a Security Strategist and brings over 25 years of industry experience to the Securosis team, much of it at the executive level. Adrian specializes in database security, data security, and secure software development. With experience at Ingres, Oracle, and ... View Full Bio

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
DevSecOps: The Answer to the Cloud Security Skills Gap
Lamont Orange, Chief Information Security Officer at Netskope,  11/15/2019
Attackers' Costs Increasing as Businesses Focus on Security
Robert Lemos, Contributing Writer,  11/15/2019
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Current Issue
Navigating the Deluge of Security Data
In this Tech Digest, Dark Reading shares the experiences of some top security practitioners as they navigate volumes of security data. We examine some examples of how enterprises can cull this data to find the clues they need.
Flash Poll
Rethinking Enterprise Data Defense
Rethinking Enterprise Data Defense
Frustrated with recurring intrusions and breaches, cybersecurity professionals are questioning some of the industrys conventional wisdom. Heres a look at what theyre thinking about.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2019-19037
PUBLISHED: 2019-11-21
ext4_empty_dir in fs/ext4/namei.c in the Linux kernel through 5.3.12 allows a NULL pointer dereference because ext4_read_dirblock(inode,0,DIRENT_HTREE) can be zero.
CVE-2019-19036
PUBLISHED: 2019-11-21
btrfs_root_node in fs/btrfs/ctree.c in the Linux kernel through 5.3.12 allows a NULL pointer dereference because rcu_dereference(root->node) can be zero.
CVE-2019-19039
PUBLISHED: 2019-11-21
__btrfs_free_extent in fs/btrfs/extent-tree.c in the Linux kernel through 5.3.12 calls btrfs_print_leaf in a certain ENOENT case, which allows local users to obtain potentially sensitive information about register values via the dmesg program.
CVE-2019-6852
PUBLISHED: 2019-11-20
A CWE-200: Information Exposure vulnerability exists in Modicon Controllers (M340 CPUs, M340 communication modules, Premium CPUs, Premium communication modules, Quantum CPUs, Quantum communication modules - see security notification for specific versions), which could cause the disclosure of FTP har...
CVE-2019-6853
PUBLISHED: 2019-11-20
A CWE-79: Failure to Preserve Web Page Structure vulnerability exists in Andover Continuum (models 9680, 5740 and 5720, bCX4040, bCX9640, 9900, 9940, 9924 and 9702) , which could enable a successful Cross-site Scripting (XSS attack) when using the products web server.